Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

CdZn₂KB₂O₆F, a new fluoride borate crystal

Fan Zhang,^{a,b}* Zhi-Wei Jiao,^b De-Zhong Shen,^b Guang-Qiu Shen^b and Xiao-Qing Wang^b

^aState Key Laboratory of Enhanced Oil Recovery, Enhanced Oil Recovery Department, Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, People's Republic of China, and ^bDepartment of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China Correspondence e-mail: zhangfan902@petrochina.com.cn

Received 14 September 2009 Accepted 20 November 2009 Online 16 December 2009

During an attempt to grow crystals of the nonlinear optical material Cd₃Zn₃B₄O₁₂ using a KBF₄ flux, crystals of a new cadmium dizinc potassium borate fluoride compound, CdZn₂KB₂O₆F, were unexpectedly isolated. The structure consists of layers constructed of distorted corner-sharing ZnO₃F tetrahedra and BO₃ triangles. Both Zn and B reside on threefold rotation axes, while the F⁻ anion is located at a site of 3.2 symmetry. The Cd^{II} (site symmetry $\overline{3}$) and K^+ (site symmetry 3.2) ions occupy six- and nine-coordinate interlayer sites, respectively. The BO₃ triangles and ZnO₃ pyramids from the ZnO₃F tetrahedra share bridging O atoms with each other to form an extended [ZnBO₃] layer parallel to (001). Although these layers are similar to the $[MBO_3]$ layers seen in other compounds, they are uniquely bridged here by the Cd centres and F⁻ anions to form a three-dimensional framework. In so doing, a series of channels is formed along the [010] direction and the K⁺ cations are found in these channels.

Comment

Recently, numerous studies have been carried out on inorganic nonlinear optical (NLO) borate crystals, which are widely used in optical communications, laser medicine and signal processing (Becker, 1998). Some fluoride borates display good NLO properties, including KBe₂BO₃F₂ (Wu *et al.*, 1996), Ln₃(BO₃)₂F₃ (Ln = Sm, Eu and Gd; Corbel *et al.*, 1998), Ba*M*BO₃F₂ (*M* = Ga and Al; Park & Barbier, 2000) and $ABe_2BO_3F_2$ (McMillen & Kolis, 2008). In the present work, KBF₄ was added as a flux in the ternary CdO–ZnO–B₂O₃ system in an attempt to grow the NLO crystal Cd₃Zn₃B₄O₁₂ (Zhang, 2008), of interest in part due to its reported fluorescence behaviour (Harrison & Hummel, 1959). The title new fluoride borate crystal, CdZn₂KB₂O₆F, was unexpectedly obtained and has been structurally characterized.

 $CdZn_2KB_2O_6F$ belongs to the trigonal $P\overline{3}1c$ space group and the structure consists of (001) layers formed by corner-

Figure 1 The unit cell of $CdZn_2KB_2O_6F$.

sharing ZnO₃F tetrahedra and BO₃ triangles, linked by Cd^{II} ions occupying six-coordinate interlayer sites with K⁺ ions in interlayer channels (Fig. 1). The Zn^{II} ion is coordinated by three O atoms and an F⁻ ion to form a slightly flattened ZnO₃F tetrahedron (O–Zn–O angles ~117° and O–Zn–F angles ~100°). The BO₃ triangles are planar, with ideal angles, as required by the threefold symmetry, and with B–O bonds comparable with those in other borates (Sun *et al.*, 2003; Haberer & Huppertz, 2009).

The $[BO_3]$ triangles and $[ZnO_3]$ pyramids from the $[ZnO_3F]$ tetrahedra share bridging O atoms to form an extended [ZnBO₃] layer (Fig. 2), which is related to the layers observed in the crystal structures of Sr₂Be₂B₂O₇ (SBBO), KBe₂BO₃F₂ (KBBF) and BaAlBO₃F₂ (BABF) (Becker, 1998). In the title crystal structure, the [ZnBO₃] layers are stacked along the (001) direction, connected by Cd and F atoms. In SBBO, the [BO₃] groups are linked through [BeO₄] tetrahedra to form $[Be_2B_2O_7]$ layers, which are stacked in a coplanar orientation along [001] (Chen et al., 1995). In KBBF and BABF, [BO₃] and $[BeO_3F]/[AlO_3F_2]$ sheets are very similarly stacked along [001]. The layers in these structures are essentially the same as those in CdZn₂KB₂O₆F, with the Zn sites occupied by Be/Al atoms instead. Unlike the structures of SBBO, KBBF and BABF, in the title compound a series of CdO₆ octahedra and bridging F atoms links adjacent ZnBO₃ layers alternately to form a unique three-dimensional framework (Fig. 3).

Six O atoms from adjacent layers coordinate the Cd atoms to form slightly distorted CdO_6 octahedra. The F atoms are two-coordinate and bridge two Zn^{II} ions from different layers. The Zn-F bonds make the Zn^{II} ions deviate slightly from the BO₃ layers by 0.327 (1) Å. The bridging Cd^{II} and F⁻ ions together connect the [ZnBO₃] layers to form a three-dimensional open framework. In this way, channels are formed along the [010] direction and the K⁺ cations occupy these channels. Each K⁺ ion is surrounded by six O atoms and three F⁻ ions (Table 1). The six O atoms form a trigonal antiprismatic

Figure 2

A single $[ZnBO_3]_n$ layer, viewed along the *c* axis, showing the BO₃ (smaller) and ZnO₃ (larger) triangles connected to each other *via* shared corners.

Figure 3

The extended structure of $CdZn_2KB_2O_6F$, viewed along the *b* axis, with the CdO_6 octahedra (dark; rectangular in this projection) and K⁺ ions (large spheres) filling the channels. The remaining polyhedra (triangular in this projection) are the [ZnO₃F] tetrahedra.

arrangement, with the three F atoms capping edges linking the opposite trigonal faces. In this way, the six O atoms and three F atoms form a tetrakaidecahedron around the K^+ ion.

The crystalline powder of $CdZn_2KB_2O_6F$ exhibits distinct blue photoluminescence, with emission peaks at 471 and 483 nm on excitation at 389 and 400 nm, respectively. The luminescence may be caused by the planar sandwich layers coordinated to the Cd^{II} ions, which affect the charge transfer between the Cd^{II} ions and the layers in a process similar to ligand-to-metal charge transfer (LMCT).

Experimental

The precursor $Cd_3Zn_3B_4O_{12}$ was synthesized from CdO (99.8%), ZnO (99.95%) and H_3BO_3 (99.99%) according to the published procedure of Zhang *et al.* (2008). $Cd_3Zn_3B_4O_{12}$ and KBF_4 (99.0%) (mole ratio 1:4) were mixed and ground to a fine powder in a mortar and compressed into a Pt crucible. The sample was gradually heated to 1073 K and kept at this temperature for 1 d for complete melting. It was then cooled to 973 K at a rate of 1 K h⁻¹, followed by cooling to room temperature at a rate of 20 K h⁻¹. Colourless crystals of the title compound of millimetre dimensions were isolated mechanically from the solidified melt for further study.

Z = 2

Mo $K\alpha$ radiation

 $0.14 \times 0.1 \times 0.1 \text{ mm}$

 $\mu = 10.93 \text{ mm}^-$

T = 295 K

Crystal data

CdZn₂KB₂O₆F $M_r = 418.86$ Trigonal, $P\overline{3}1c$ a = 5.0381 (6) Å c = 15.1550 (19) Å V = 333.13 (7) Å³

Data collection

Bruker P4 diffractometer Absorption correction: empirical (using intensity measurements) (North et al., 1968) $T_{min} = 0.243, T_{max} = 0.335$ 2534 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.083$ S = 1.03599 reflections 599 independent reflections 547 reflections with $I > 2\sigma(I)$ $R_{int} = 0.053$ 3 standard reflections every 97 reflections intensity decay: none

23 parameters $\Delta \rho_{\text{max}} = 1.55 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -2.29 \text{ e } \text{ Å}^{-3}$

Table 1 Selected bond lengths (Å).

Cd1-O1	2.297 (3)	K1-F1	2.9087 (3)
Zn1-O1	1.933 (3)	$K1 - O1^{i}$	2.954 (3)
Zn1-F1	2.0228 (7)	B1-O1	1.382 (3)

Symmetry code: (i) $-x + y, y + 1, -z + \frac{1}{2}$.

Data collection: *XSCANS* (Bruker, 1997); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors are grateful for financial support from the National Natural Science Foundation of China (grant No. 50590402).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ3218). Services for accessing these data are described at the back of the journal.

References

- Becker, P. (1998). Adv. Mater. 10, 979-991.
- Bruker (1997). XSCANS (Version 2.2) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, C. T., Wang, Y. B., Wu, B. C., Wu, K. C., Zeng, W. L. & Yu, L. H. (1995). *Nature (London)*, 373, 322–324.
- Corbel, G., Retoux, R. & Leblanc, M. (1998). J. Solid State Chem. 139, 52–56. Haberer, A. & Huppertz, H. (2009). J. Solid State Chem. 182, 888–895.

Harrison, D. E. & Hummel, F. A. (1959). *J. Electrochem. Soc.* **106**, 24–26. McMillen, C. D. & Kolis, J. W. (2008). *J. Cryst. Growth*, **310**, 2033–2038.

- McMilen, C. D. & Kons, J. W. (2008). J. Cryst. Growth, **310**, 2055–2058.
 North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A**24**, 351–359.
- Park, H. & Barbier, J. (2000). J. Solid State Chem. 155, 354-358.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sun, T.-Q., Pan, F., Wang, R.-J., Shen, G.-Q., Wang, X.-Q. & Shen, D.-Z. (2003). Acta Cryst. C59, i107–i108.

- Wu, B. C., Tang, D. Y., Ye, N. & Chen, C. T. (1996). Opt. Mater. 5, 105-109.
- Zhang, F. (2008). PhD dissertation, pp. 109–114, Tsinghua University, China. Zhang, F., Shen, D. Z., Shen, G. Q. & Wang, X. Q. (2008). *Mater. Res. Bull.* **43**,
- Zhang, F., Shen, D. Z., Shen, G. Q. & Wang, X. Q. (2008). *Mater. Res. Butt.* **45**, 3188–3194.